目前TRINA已經(jīng)在英國皇家化學(xué)學(xué)會(huì)(RSC)《能源與環(huán)境科學(xué)》期刊中發(fā)表了論文。在論文中,研究人員指出,新型納米硫陰極材料(65%的最終硫載荷)可以在2C高速率條件下工作(1C對應(yīng)1小時(shí)完整充電或放電),并可完成超過500個(gè)充放電循環(huán),庫侖效率(即充放電效率)幾乎達(dá)到100%。

    在整個(gè)化學(xué)反應(yīng)過程中,由于疊層納米膜碳導(dǎo)體可以自行組合,因此針對納米硫陰極材料表面特性而形成布局有序的超分子結(jié)構(gòu)會(huì)受到極大影響。具備粘合能力且能夠與溶劑發(fā)生反應(yīng)的任何材料(離子或氫鍵)均可以通過疊層的方式轉(zhuǎn)化為多分子層結(jié)構(gòu)。上述結(jié)果表明,對于其它低導(dǎo)電率電池陰極而言,未來這種新型納米硫陰極材料將成為較為理想的解決方案。

    納米硫陰極材料可以帶來高達(dá)1672毫安/克的理論容量,這對于下一代電池來說很有吸引力。不過在實(shí)際應(yīng)用中,高電阻、低載荷活性物質(zhì)以及充放電時(shí)電解質(zhì)中間聚硫化物分解等問題仍然帶來了不小的挑戰(zhàn),這些問題會(huì)導(dǎo)致庫侖效率下降、電池容量損耗加快,同時(shí)也會(huì)發(fā)生自放電現(xiàn)象。

    此前,很多科研小組一直在探索采用聚合物電解質(zhì)、納米涂層和納米膜來阻止聚硫化物分解,從而提升鋰硫電池的性能。而TRINA研究人員經(jīng)過多次試驗(yàn)后發(fā)現(xiàn),盡管基于聚合物的電解質(zhì)可以被用來阻止聚硫化物分解,不過其傳導(dǎo)率相比普通基于液體的電解質(zhì)明顯降低,這也使得實(shí)現(xiàn)高效的放電率難上加難。

    當(dāng)在復(fù)合材料或納米涂層中使用聚合物后,硫陰極的循環(huán)特性有所改善。此外,聚合物可以為硫陰極提供一個(gè)在充電和放電之間自由調(diào)節(jié)容量的彈性框架。與此同時(shí),TRINA科研小組在鋰電池納米硫陰極材料中采用的全新結(jié)構(gòu)也可以抑制中間聚硫化物的分解,減少碳導(dǎo)體生成等問題。
 
納米硫陰極材料 鋰離子電池
點(diǎn)贊 0舉報(bào)收藏 0打賞 0評論 0
 
更多>同類鋰電資訊
推薦圖文
特斯拉采用的18650電池到底安不安全? 探究中航鋰電內(nèi)部,科技感爆棚,進(jìn)來看看
鈦酸鋰材料量產(chǎn)已成規(guī)模 新能源汽車未來的發(fā)展之路
推薦鋰電資訊
點(diǎn)擊排行
鋰電商圈二維碼
網(wǎng)站首頁  |  歷年雜志  |  會(huì)員服務(wù)  |  廣告服務(wù)  |  關(guān)于我們  |  使用協(xié)議  |  隱私政策  |  隱私聲明  |  聯(lián)系方式  |  網(wǎng)站地圖  |  排名推廣  |  廣告服務(wù)  |  積分換禮  |  網(wǎng)站留言  |  RSS訂閱  |  違規(guī)舉報(bào)